
Week 3 - Monday

 What did we talk about last time?
 System limits
 ASCII table
 printf() format strings
 Started bitwise operations

One thing I've noticed with C/C++ programmers, particularly (which is,
again, the pool from which most C# programmers will be drawn), is
that many of them are convinced that they can handle dangerous
techniques which experience shows they can't handle. They say things
such as, "I like doing my own memory management, because it gives
me more control," but their code continually suffers from memory
leaks and other pointer-related problems that show quite clearly that
they are not to be trusted with these things that give them "more
control." This, in my view, is just one more reason why "unsafe"
features should not be built into mass-market languages like C#.

Craig Dickson

 Now that we have a deep understanding of how the data is stored
in the computer, there are operators we can use to manipulate
those representations

 These are:
 & Bitwise AND
 | Bitwise OR
 ~ Bitwise NOT
 ^ Bitwise XOR
 << Left shift
 >> Right shift

 The bitwise XOR operator (^) takes:
 Integer representations a and b

 It produces an integer representation c
 Its bits are the logical XOR of the corresponding bits in a and b

 Example using 8-bit char values:

char a = 46;
char b = 77;
char c = a ^ b; //99

0 0 1 0 1 1 1 0 a

^ 0 1 0 0 1 1 0 1 b

0 1 1 0 0 0 1 1 c

 It is possible to use bitwise XOR to swap two integer values
without using a temporary variable

 Behold!

 Why does it work?
 Be careful: If x and y have the same location in memory, it

doesn't work
 It is faster in some cases, in some implementations, but should not

generally be used

x = x ^ y;
y = x ^ y;
x = x ^ y;

 The << operator shifts the representation of a number to the left
by the specified number of bits

 The >> operator shifts the representation of the number to the
right by the specified number of bits

 Ignoring underflow and overflow, left shifting is like multiplying by
powers of two and right shifting is like dividing by powers of two

char a = 46;
char b = a << 2; // -72

char a = 46;
char b = a >> 3; // 5

 Things smaller than int will be promoted to int
 What are the following?
 4 & 113
 15 | 39
 31 << 4
 108 >> 5
 ~80

 The computer uses bitwise operations for many things
 These operations are available for our use and are very fast
 Shifting is faster than multiplying or dividing by powers of 2
 You can keep a bitmask to keep track of 32 different

conditions
 That's quite a lot of functionality for four bytes!

 Operators in every programming language have precedence
 Some of them are evaluated before others
 Just like order of operations in math

 * and / have higher precedence than + and –
 = has a very low precedence

 I don't expect you to memorize them all, but
 Know where to look them up
 Don't write confusing code

Type Operators Associativity

Primary Expression () [] . -> expr++ expr-- Left to right

Unary * & + - ! ~ ++expr --expr (typecast) sizeof Right to left

Binary

* / %

Left to right

+ -

>> <<

< > <= >=

== !=

&

^

|

&&

||

Ternary ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

 What happens here?
 x++ >> 5 == 4 % 12 & 3

 It's also worth noting that precedence doesn't tell the whole story
 What about multiple assignments in a single line of code?
 C doesn't give you guarantees about what happens when
 The following could have different results on different compilers:

printf("%d %d", x++, (x + 5));
a[x] = x++;
x = x++;

 Sequences of statements surrounded by braces are treated
like a single statement with no value
 Braces can be thrown in whenever you want
 We used to say that "braces were optional" for one-line blocks, but

this is the more accurate way to look at it
 An expression can always become a statement

int a = 150;
a; // Legal (but silly) in C, illegal in Java

 Like Java, the body of an if statement will only execute if the
condition is true
 The condition is evaluated to an int
 True means not zero

 An else is used to mark code executed if the condition is false

Sometimes this is natural and clear; at other times it can
be cryptic.

The if part Any expression
that has a value

Any single statement ending in
a semicolon or a block in braces

if(condition)
statement

Two different
outcomes

if(condition)
statement1

else
statement2

 We can nest if statements inside of other if statements,
arbitrarily deep

 Just like Java, there's no such thing as an else if statement
 But we can pretend there is because the entire if statement

and the statement beneath it (and optionally a trailing else)
are treated like a single statement

 switch statements allow us to choose between many listed
possibilities

 Execution will jump to the matching label or to default (if
present) if none match
 Labels must be constant (either literal values or #define constants)

 Execution will continue to fall through the labels until it
reaches the end of the switch or hits a break
 Don't leave out break statements unless you really mean to!

switch(data)
{

case constant1:
statements1

case constant2:
statements2

…
case constantn:

statementsn
default:

default statements
}

 Use bitwise operations and selection statements to test if the
7th bit (starting from bit 0) in an integer value is a 1 or a 0

 More control flow
 Finish selection
 Loops

 Keep reading K&R chapter 3
 Start on Project 2
 Form teams if you haven't already!
 Due next Friday by midnight

	COMP 2400
	Last time
	Questions?
	Project 2
	Quotes
	Bitwise Operators
	Bitwise operators
	Bitwise XOR
	Swap without a temp!
	Bitwise shifting
	Shift and mask examples
	Why do we care about bitwise operations?
	Precedence
	Precedence table
	Insane precedence example
	Control Flow
	Control flow
	Selection
	if statements
	Anatomy of an if
	Anatomy of an if-else
	Nesting
	switch statements
	Anatomy of a switch statement
	Example
	Upcoming
	Next time…
	Reminders

